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Abstract

A Gene Regulatory Network represents a collection of proteins, enzimes and DNA fragments inside a cell,
interacting with each other and with other substances in the cell. The study of GRNs became lately a matter
of computer science simulation, because of the deterministic nature of protein interactions: any protein has
a certain number of sites in which it is possible to bind other specific proteins or substances, and once a site is
bound the protein reacts in a deterministic way, for example making new sites visible, creating or destroying
links with other proteins, or changing its shape in order to become active in new interactions. Using data
bases extracted by experiments and biological studies, one should resume all the known properties of each
protein in a logical model in order to make a simulation and see how the system evolves. Final results of
such a simulation can be biologically very important to understand new aspects of the evolution of a cell.

The aim of this thesis is to link two mathematical models used in the study of molecular biology:
at a lower level k-calculus, a process algebra (developed in [1]) which defines processes called reactions
considering the details of protein’s structure, and at a higher level polynomial dynamical systems, used to
model the global behavior of a GRN in a dynamical system with discrete time steps, by describing at every
time the quantity of each gene in the cell. These two models approach the same problem, with different
points of view: we want to describe them and show how they can ‘communicate’. Our aim is to show how
it is possible to link rigorously the microscopic description of k-calculus to the macroscopic behavior of a
polynomial dynamical system (through mathematical proves and mathematically founded algorithms, both
deterministic and stochastic), and how this link allows to extract better information about GNRs, without
loosing the effect of any of the microscopic properties we modelled.

In Figure 1 it is possible to see a schematic description of the thesis: we evidentiated the roles of k-calculus
and polynomial dynamical systems, showing with paths how they interact.

The first chapter: formal definition of k-calculus and its properties

k-Calculus, introduced in [1], is a computational model created to describe in detail how proteins and
biological molecules interact. In k-calculus it is easy to include microscopic biological information in a model;
moreover, reactions are defined only on the relevant part of the molecules, it is not necessary to consider the

1



Figure 1: Structure of the thesis

whole protein while modelling a reaction. It is proved (always in [1]) that k-calculus is simulated in mk-
calculus, a finer-grained version of it implementing only binary interactions between single molecules: the
meaning of this simulation is that k-calculus is a model in which it is easy to encode biochemical reactions,
and at the same time it represents a low-level description of protein interactions.

We introduce k-calculus formally, as a process algebra. A process algebra is a computational model
working on processes. Each process is abstractly represented by a name extracted by a countable set (as for
every computational model). The difference between process algebras and other computational models are
some particular operations that are generally allowed: these operations give a meaning to the concept of
process. Some common operations are:

• parallel composition of two processes (there are two processes which are updated in parallel);

• nondeterministic binary choice between two processes (one of two processes is updated, while the
other one is abandoned);

• sequential composition (when there is an operation which has the priority to be the first available on
a particular process);

• communication between processes (a data is sent from a process to another one, through a communi-
cation channel).

Besides these operations, characterizing a process algebra, there are notions common to many other com-
putational models, such as bound and free variables, or transition labels.

About the structure of k-calculus, a single element of its syntax is called protein, and it contains a number
of sites, which are meant to represent an analogous of sites in real proteins. A site can be either hidden,
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visible or bounded: respectively, a site which cannot be used, a site which can be used but it is free, and a site
which is linked by an edge to an other site (for the formal syntax see Definition 1). Solutions are defined by
induction, as sets of proteins totally defined on their sites.

Definition 1 (k-syntax) k-Calculus’ syntax consists of:

• a countable set of protein names P; for proteins we use capital letters A, B, etc;

• a countable set of edge names E; we use normal letters for edges, x, y, etc;

• a map from P to the set of natural numbersN.

The interpretation of the map s : P →N is given by s(A) = the number of sites of A. An interface is a partial map ρ,
fromN to E + {h, v}. If ρ(ι) = h for a site ι it means that the site is hidden; if ρ(ι) = v the site is visible; if ρ(ι) = x,
x ∈ E the site is bounded by x.

The relation defining what is a correct way to let proteins evolve is the growth relation: it represents a
single step of growth of a protein (creation of a new edge, switching of a site between visible and hidden),
and it depends on an edge name set {x1, · · · , xm} (shortly x̃), that is the set in which one can choose the edge
names to use (see Figure 2 for a graphical representation).

Figure 2: Graphic representation of an occurrence of growth relation: the letters h and v represent respec-
tively hidden and visible sites, whereas x represents a free name associated to the new edge

Starting from the growth relation defined on single proteins, are defined k-reactions, the point of the syntax
of k-calculus in which it is possible to encode biochemical reactions. Important properties of k-reactions are:

• a reaction can be either monotonic or antimonotonic, i.e., it can only create new edges, or only delete
existing ones;

• a reaction is usually defined only on the sites which are biologically relevant for it: formally, this is
allowed by defining reactions partially on the set of sites;

• it is also possible to synthetize a new protein.

Given a set of k-reactions and an initial solution, it is possible to define a transition system, in which
to each step corresponds the application of one of the reactions. Elements of such a transition system are
complexes, sets of proteins connected together through their sites: a set of complexes inside the current
solution gives rise to a transition step if it matches a reaction. Depending on the shape of given k-reactions,
the transition system associated to them may be nondeterministic.

Successively to the introduction of k-calculus, we show (again from [1]) how it is possible to simulate it
in mk-calculus (a model describing biochemical reactions at a level of binary interactions between proteins)
and π-calculus (the most common and general of process algebras). Besides the interest about simulating
a high level language such as k-calculus in a finer-graned one such as mk, this first simulation is necessary
to include k-calculus in π-calculus: in fact, π-calculus is a process algebra based on communication between
processes, and mk-calculus naturally introduces communication procedures to coordinate at a binary level
bigger k-reactions.

The simulation of k-calculus in π-calculus is important for logical reasons, because it puts in relation
the new language with a well known computational model. Moreover, it is possible to implement on any
process of π-calculus a structure of continuous time Markov chain (Definition 2), stochastically simulable
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through a simple random number generator: this procedure is described in [2], the new language (called Sπ-
calculus) consists in associating the rate of an exponential random variable to each process, according to its
different possible nondeterministic evolutions. Given a process in the syntax of Sπ-calculus, together with
its starting rates, it is extracted a random number according to each rate, and it is executed the π-transition
step associated to the extracted number; then, a set of transition rules describes how to extract new rates
associated to the evolutions of the process we obtained (to define transition rules are used properties of
exponential variables).

The logical simulation of k-calculus in mk and π-calculus gives us the chance to implement in a single
Sπ-process an initial solution and a set of k-reactions, and simulate its evolution through a random number
generators: this simulation algorithm is exact and mathematically rigorous.

In Figure 1 the upper part of the scheme corresponds to this first chapter: microscopic properties of
biochemical reactions are modelled in k-calculus, which through a series of logical simulations can be
rigorously encoded in Sπ-calculus and simulated. The essential properties of k-calculus coming out from
this sequence of process algebras are:

• k-calculus allows to model smartly biochemical reactions;

• it describes proteins and molecules in detail;

• since it is simulated in π-calculus, it is logically founded.

The second chapter: exact simulation of k-calculus

In this second part of the thesis we describe how it is possible to simulate exactly a transition system
induced by k-calculus. This algorithm takes an important part in linking the microscopic model of k-calculus
to macroscopic polynomial dynamical systems (the second model on which we focus, see Definition 5), since
it returns as output a simulation which considers all the microscopic details modelled in k-calculus. The
shape of output simulations is as time series, a succession of vectors S(t) = (X1(t), · · · ,XN(t)) representing at
time t the number of molecules of each kind (the state of the system at time t): time series are the input
data of a deterministic algorithm (reverse engineering algorithm, described in the third chapter) which models
them into a polynomial dynamical system.

A simulation of k-calculus through Sπ-calculus introduced in the first chapter is not optimal, because:

• we can encode a biological transition system only passing through two previous simulations;

• in a π-process simulating a k-transition system there is a large amount of nondeterministic steps,
because we have to put in the same process all the potential evolutions of each sample of protein
according to each k-reaction;

• a simulation passing through π-calculus does not reflect at all the actual way proteins move and
interact inside a cell.

Hence, we use a different philosophy respect to stochastic π-simulation: we take as a model a classical
algorithm, introduced by Gillespie in [3], simulating stochastically a system of general coupled chemical
reactions. The main tool necessary for a stochastic algorithm are Markov chains (Definition 2, we mentioned
them also in the previous section).

Definition 2 (Markov chain) A Markov chain is a succession of random variables homogeneous in time, which
can take values in the same space X. ‘Homogeneous’ means that at each step of time there exists a fixed probability,
depending only on the current state i, to make the variable pass in the new state j during the next step. That is

P{Xn+1 = j | Xn = i,Xn−1 = in−1, · · · ,X1 = i1,X0 = i0} = Pi j.

The chain is said to be continuous time (shortly called CTMC) if time steps are ranged on a continuous variable in
R+.
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Gillespie’s classical algorithm takes as input binary reactions in the shape of rules mapping two reactants
(even of the same kind) into a linear combination of molecules (as an example, if we consider molecular
species S1 and S2, a possible reaction can be S1 + S1 → S1 + S2). Under hypothesis of a distribution of spheric
molecules in a volume in thermal equilibrium, in [3] it is deduced, with calculations of physical kinetics,
that for each binary reaction (indexed by µ), there exists a constant cµ such that

cµdt = average probability that a particular combination of Rµ reactant molecules (1)
will react accordingly in the next infinitesimal time interval dt.

The expression in (1) is called fundamental hypothesis of the stochastic formulation of chemical kinetics. The
constant cµ is deduced from a context of kinetic collisions of particles in a volume: the probability in (1)
represents a collision between two occurrences of the molecular species necessary to activate the reaction µ.

The algorithm creates a Markov chain representing the process of collisions between all molecules in
the solution. Using the hypothesis in (1), it is built a joint probability distribution, P(τ, µ), which if multiplied
for the infinitesimal time dτ represents the probability that, given a state (X1(t), · · · ,XN(t)) at time t, the next
reaction will occur in the interval (t + τ, t + τ + dτ) and it will be of the kind µ. At each step, a particular
couple (τ, µ) is extracted using probabilistic results, starting from a couple of random numbers extracted
according to the uniform distribution: then, the current molecular population and the current expression
for P(τ, µ) are updated, and the process starts again. The algorithm prints the populations S(t) after a given
interval, and it stops when it is reached the length requested for the time series.

The important properties of this algorithm are:

• it is exact, in terms of probability;

• given the hypothesis in (1), which is deduced by thermodynamics, all the procedure is mathematically
justified by theorems of probability.

Now, the principal task we had in this part of the thesis was to adapt the general algorithm exposed in
[3] to work on k-reactions and k-solutions. There are two evident problems in doing this:

1. the algorithm in [3] takes as input only binary reactions, while k-reactions can be of any order;

2. a k-reaction is defined only on part of k-complexes, this means that, considering k-complexes as
molecules inside a volume, there are tipically more ways to apply a k-reaction on the system: reactions
do not depend only on collisions as in Gillespie’s algorithm, at least not in the shape they have been
defined.

To solve the first problem, we considered an extension of the algorithm in [3], made to take as input as
well unimolecular reactions: in [4], there is a different physical justification to assume also in this case the
hypothesis (1). A reaction which is either binary or unimolecular is called elemental.

Knowing about the adaptation for elemental reactions of Gillespie’s algorithm, we propose a formal
definition of an elemental decomposition for k-reactions. Starting from a transition system (S,R), where S is
the initial solution and R is the set of reactions, we define a procedure to extract an equivalent transition
system (JSKe,R,E), in which E is composed only by elemental reactions.

The charachteristics of our elemental decomposition are:

• it is formally correct according to k-calculus syntax;

• to decompose a reaction which is not elemental we consider every combinatorial possibility the
complex has to be built, not to exclude any of the ways in which a random simulation may occur;

• to prove correctness of the decomposition (i.e. to prove that executing random steps in (JSKe,RE) we
do not obtain anything that would not be reachable from (S,R)) we introduce conditions

1. not to let interact two subreactions of different reactions on the same proteins before the first
reaction is completed
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2. to distinguish more occurrences of the same protein in the same reaction.

We proved completeness and correctness of the elemental decomposition (Proposition 1, Proposition 2); in
Proposition 2 the notation Tec represents a cleanup, a solution in which all the reactions which have not been
completed are cancelled.

Proposition 1 (completeness of the elemental decomposition) For each set R of k-reactions, and for any solu-
tions S,T, if we denote with E the elemental decomposition of R, we have

(S R
−→∗ T) =⇒ (S E

−→∗ T).

Proposition 2 (correctness of the elemental decomposition) For each k-transition system (S,R) (which ele-
mental decomposition is (JSKe,R,E)) we have:

1. (JSKe,R
E
−→∗ T) =⇒ (S R

−→∗ Tec);

2. if we call Rm the subset of R composed only by its monotonic reactions,

JSKe,R
E
−→∗ T

implies that, for each T′ : Tec Rm
−→∗ T′, it is not possible to have

Tec < T′ ≤ JTK−1
e,R

where ≤ represents the subcomplex relation extended to solutions.

Having proposed a way to translate correctly any k-reaction into elemental ones, the remaining problem
to use Gillespie’s algorithm on k-calculus is the multiple possibility of applying a k-reaction. The solution
we propose is to use the classical algorithm only to model collisions (we mean also unproperly unimolecular
collisions): given the current molecular population S(t), we extract a list of all the k-complexes matching
at least a reaction, and through Gillespie we simulate the collision of one of them; then, knowing which
collision occurred, we select one of the reactions available using weights associated to each of them. Mainly,
we decompose a step of the algorithm in [3] in two steps, one to simulate collisions, one to select the reaction.

The advantage of our method is that we distinguish between the collision rates, used to model collisions
exactly as in [3], and the reaction weights, which represent only the likelihood that each reaction has to
be activated if in competition with others. In particular, reaction weights may be directly decided by the
biologist according to additional information available.

In Figure 1, the work of this part of the thesis is represented by the path connecting k-calculus to time
series: a mathematical proof for the elemental decomposition of k-transition systems, and the stochastic
algorithm of Gillespie to simulate them (in which collisions are separated by choice of reactions). As a
resume of the properties of this simulation, we say:

• it is done through a stochastic algorithm which is exact;

• we reproduce the thermodynamical conditions under which molecular collisions occur;

• none of the microscopic properties of k-calculus is lost.

The third chapter: using commutative algebra to construct polynomial
dynamical systems

In this chapter we describe polynomial dynamical systems, the model in which we want to include informa-
tion derived by the exact simulation of k-calculus. A polynomial dynamical system is a set of n nodes valued
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over a finite field F, provided with a transition function expressed as a vector of polynomials F = ( f1, · · · , fn)
such that fi ∈ F[X1, · · · ,Xn] for each i = 1, · · · ,n. In a polynomial dynamical system representing a Gene
Regulatory Network each node corresponds to a biochemical molecule (a gene, a protein, etc), the values
over F represent the distribution of the corresponding molecule in the cell, and the transition function a
deterministic way to let each node evolve, in function of the previous state of the system.

We progressively define a polynomial dynamical system, to evidentiate its properties.

Definition 3 (time-discrete dynamical system) A time-discrete dynamical system consists of a set of nodes
(or vertices) V, each of them being a variable which can have different values on a predetermined discrete space S. To
each node vi is associated a function fi : SN

→ S to determine its evolution.

Definition 4 (finite dynamical system) A finite dynamical system is a time-discrete dynamical system in which
the time transitions of every node are effectued synchronously.

Definition 5 (polynomial dynamical system) A polynomial dynamical system is a finite dynamical system,
with choice of values in a generic finite field S = F. Functions fi are expressed in the shape of polynomials in
F[X1, · · · ,XN].

Synchronicity, introduced in Definition 4, allows us to speak about global states of the system. As an
example of how synchronicity works, let’s consider a simple net with three vertices, ranged over F3, and
functions f1 = Y2, f2 = 2X + 1 and f3 = X + 2Z. If the whole network is in the state (X,Y,Z) = (2, 0, 2),
to compute the next state we ‘store’ the values of the state (2, 0, 2) and we calculate independently each
function fi: in this case the next state of the system is (0, 2, 0); see Figure 3 for the transition space of the
states of this system.

Figure 3: Transition space of the F3-polynomial dynamical system described by a transition F = (Y2, 2X +
1,X + 2Z)

The characteristics making polynomial dynamical systems good to model the macroscopic behavior of
a Gene Regulatory Network are:

• they are synchronous and discrete in time, which makes their dynamics easy to study;

• they support a mathematical structure such as finite field algebra: it is quite easy to range protein
quantity on a finite field, because every finite set S can be seen as a field, provided that its cardinality
is a prime or a power of a prime, pn : n ∈N?, p prime.

We expose from [8] an algorithm to construct a polynomial dynamical system, representing time series
produced by a stochastic simulation of the kind of Gillespie (this problem is generally called reverse engi-
neering). The algorithm takes as input a series of m states, s1, · · · , sm, such that s j = (s j,1, · · · , s j,n). The states
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must be vectors in a finite field F: to have them in this shape it can be applied a discretization algorithm
to our molecular population of the kind of Gillespie (a vector of integers, where each element represents
the exact number of molecules of the corresponding specie). The discretization algorithm (see [9]) uses a
single-link clustering method, together with a criterion based on entropy, to determine the smallest finite set
(of cardinality D) over which it is possible to range the original integers maintaining their distribution: we
take the smallest prime p ≥ D, and riarrange the values over {0, · · · , p − 1}, which has the same cardinality
of the finite field Fp.

Starting from a time series of states in Fn
p , the algorithm constructs a polynomial interpolating m − 1

points, f 0
i , such that

f 0
i (s j,1, · · · , s j,n) = s j+1,i, (2)

for each j = 1, · · · ,m−1: this is done by using the classical interpolation basis of Lagrange. Once a particular
solution ( f 0

1 , · · · , f 0
n ) has been constructed, the typical problem is how to choose the best sample of transition

function interpolating the points in (2). In [8], it is suggested for each f 0
i a condition of minimality, respect

to the ideal I of all the functions vanishing over the set {s j | j = 1, · · · ,m − 1}: each polynomial f 0
i is reduced

modulo I, to obtain the final transition function ( f1, · · · , fn). The criterion of minimality for fi chosen in [8]
has the aim to delete from f 0

i every part which would model a behavior not supported by the simulation.
So, the reverse engineering algorithm needs two subalgorithms to be completed:

1. an algorithm to reduce a polynomial f ∈ k[X1, · · · ,Xn] modulo an ideal I, i.e. to find a polynomial r
such that f = h · g + r;

2. an algorithm to compute the ideal vanishing on a given set of points.

In computational algebra of polynomial rings over a field k, problems such as ideal description and
reduction of polynomials over an ideal are solved as a consequence of the definition of Gröbner bases. A
Gröbner basis for an finite set of polynomials { f1, · · · , fs} is a basis for which the division algorithm of
a polynomial f modulo { f1, · · · , fs} leads to a solution f = a1 f1 + · · · + as fs + r, where the remainder r is
univoquely determined.

Definition 6 (monomial ordering) A monomial ordering on k[X1, · · · ,Xn] is a relation > on Zn
≥0 (which corre-

sponds to a relation on the set of monomials {Xα
| α ∈ Zn

≥0}) satisfying:

1. > is total;

2. if α > β and γ ∈ Zn
≥0 then α + γ > β + γ;

3. > is a well-ordering onZn
≥0, this means that every nonempty subset ofZn

≥0 has a smallest element respect to >;

Definition 7 (multidegree) The multidegree of a polynomial fi(X1, · · · ,Xn) ∈ k[X1, · · · ,Xn] is defined by

mdeg( f ) := maxZn
≥0
{α | aα , 0}.

The leading coefficient, leading monomial and leading term are defined by

LC( f ) := amdeg( f ) ∈ k,

LM( f ) := Xmdeg( f ),

LT( f ) := LC( f )LM( f ).

The extension of the euclidean division with remainder algorithm to polynomial rings of more than
one variable is affected to the lack of a unique acceptable polynomial degree: depending on the particular
monomial ordering chosen (see Definition 6) and on the order in which the fi are listed, some monomials of f
may be divided in different ways giving rise to different remainders. About this problem we expose, from
[5], classic studies in computational algebra; in sequence,
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• we define monomial orderings and monomial ideals;

• we give examples of uniqueness problems deriving from the division algorithm;

• we prove the Hilbert basis theorem for polynomial rings (Theorem 1);

• we characterize Gröbner bases and expose the classical algorithm (Buchberger) to compute them from
a finite set of polynomials.

For Hilbert basis theorem every ideal has a finite generator set, for which it is possible to compute an
equivalent Gröbner basis; moreover, it’s possible to constrain the Gröbner basis under certain conditions
which make it unique (the unique reduced Gröbner basis).

Theorem 1 (Hilbert basis theorem for polynomial rings) Every ideal I ⊂ k[X1, · · · ,Xn] has a generating set
{g1, · · · , gt}, with finite number of elements, such that 〈LT(I)〉 = 〈LT(g1), · · · ,LT(gt)〉.

Definition 8 (Gröbner basis) Given an ideal I ⊂ k[X1, · · · ,Xn], a Gröbner basis for I is a finite set {g1, · · · , gt}

generating I and such that 〈LT(g1), · · · ,LT(gt)〉 = 〈LT(I)〉.

Gröbner basis is a useful tool for any algorithm which handles polynomials and polynomial ideals,
because it gives an univoque result to the division algorithm in more than one variable (this fact implies
many regular properties, for example if f ∈ I then the division of f modulo a Gröbner basis for I gives
always remainder zero). About our particular problem, the reduction modulo I is achieved with the division
modulo a Gröbner basis for I, so the only thing remaining to do is to compute the reduced Gröbner basis for
the ideal vanishing on each point of the series. For this there are many algorithms, based on different ideas:
the most efficient one is generally the algorithm exposed in [7], which uses a linear algebra method (row-
reduction of a matrix). We chose to describe another algorithm, found in [6], which is not as straightforward
as the one in [7] but is based on a theoretical proposition of commutative algebra (Proposition 3).

Proposition 3 A set {g1, · · · , gt} ⊂ I is a Gröbner basis for I = I(P1, · · · ,Pm) = I(V) if and only if |B(g1, · · · , gt)| = m.

The overall complexity of the reverse engineering algorithm, in its most efficient version, is exponential
in the length of input time series and polynomial in the number of points. Resuming the essential properties
of polynomial dynamical systems, we can say:

• they model biological events, in the shape of time series representing the evolution of the system, into
an automaton reproducing the macroscopic effects of initial gene distributions in a Gene Regulatory
Network;

• they are synchronous, so we are allowed to study their behavior through global states;

• their transition function is defined as a polynomial, hence we can work in a well-known mathematical
framework such as commutative algebra and finite field algebra;

The fourth chapter: extracting information about macroscopic behavior

In this last part of the thesis we show how to deduce informations about Gene Regulatory networks from
the dynamics of a polynomial dynamical system. A PDS can be seen as a discrete analogous of continuous
dynamical systems generated by differential equations: applying iteratively the transition function F we
move deterministically inside the transition space, with steady states and cycles.

Definition 9 (descendants, ancestors) The descendants of a state s are all the states reachable from it, whereas
its ancestors are the states from which it is possible to reach it. Mathematically, s′ is descendant of s (s is an ancestor
of s′) if there is a succession of intermediate states s j such that

F(s) = s1,F(s1) = s2, · · · ,F(sm) = s′.
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Definition 10 (cycles) A cycle is a subset C of the set of states maximal respect to the property that every state in
C is both ancestor and descendant of every other state. An attractor is a subset A of the set of states such that every
descentant of an element in A still belongs to A. The basin of attraction BA of an attractor A is the set of all the
ancestors of elements in A: mathematically,

BA = {s | ∃s′ ∈ A : s is ancestor of s′}.

According to Definition 9 and Definition 10, and considering the discrete nature of the system, we can
have a precise idea of the global dynamics of a polynomial dynamical system. The initial state chosen
for an execution of the model determines the particular basin of attraction containing all the following
states (see Figure 3); after a finite number of steps, the dynamics enters into an attractor (that is, a cycle:
in our case, working in a discrete set, the two definitions coincide). In the biological interpretation of
polynomial dynamical systems, an attractor is a state reached by the cell under certain initial conditions (a
certain amount of each of its proteins and genes): for example the process of a cell reaching an attractor can
correspond biologically to cell differentiation, being it the way a general kind of cell differentiates into more
specific ones. There are two kinds of cell differentiation which can be represented by polynomial dynamical
systems: if the attractor is composed only by a single state (a cycle of length one), the cell reaches that state
and it does not change anymore; if otherwise the attractor is a cycle with more than one element, the cell
oscillates periodically between different gene expressions. In this interpretation, the length of an attractor
(the number of states in the cycle) represents the evolution time of the cell. It is also possible to study the
sensitivity of attractors to disturbances (changes of the network, changes of the state of a node, etc.), to have
results about the corresponding stability of the cell to damage or mutations.

So, in order to understand the evolution of a Gene Regulatory Network, the main result we want is to
compute attractors of a PDS and their length (in Figure 1, this part of the thesis is represented by the last
path on the bottom). We present two subalgorithms to simplificate preliminarly a polynomial dynamical
system:

• first, we remove redundancy from the system (Definition 12, see also [10]), this simplification is useful
since it reduces the number of nodes: usually it is very common to find redundancy in a Gene
Regulatory Network, because necessary to prevent consequences of genetic damages in a cell;

• second, we reduce our attentions on connected components of the associated graph (see Definition 11):
attractors of the whole system can be combinatorially calculated by the ones of each component.

Definition 11 In a polynomial dynamical system, we say that the node vi influences another node v j if the function
f j describing the evolution of v j is not trivial on the variable Xi. It is possible to define an oriented associated graph
〈E,V〉, in which V is the set of nodes in the polynomial dynamical system, and an oriented edge is created between
two nodes vi and v j if vi influences v j.

Definition 12 (redundancy) A node v ∈ V of a polynomial dynamical system is redundant if the system obtained
from G by removing v has the same number and length of attractors. If a node is not redundant, it is called relevant.

Finally, we expose an algorithm to compute attractors and their lengths (see [12]). The main problem
of computing attractors is the exponential size of the transition space of a PDS (which has cardinality pn):
we can find quickly the attractor corresponding to each single initial state (by computating iteratively the
composition of F by itself, and reducing modulo p exponents of the intermediate polynomials), but it’s
not possible to know which state must be checked to find an attractor which hasn’t been calculated yet.
Moreover, to be sure that we computed all the attractors, we should check every possible initial state.

The algorithm in [12] looks for a path of increasing length k in the transition space: when such a path is
found and it contains a double occurrence of the same state, it means that it contains an attractor, and we
start looking for another path, always of increasing length, with the constraint that it does not contain the
attractors we have already found. When it is not possible to find anymore a path of the current length, it
means that we calculated all the attractors.
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In [12] this procedure is implemented by using multi-valued boolean formulas to describe a sequence of k
states in the transition space (and an additional condition to avoid ending up in an already found attractor),
and by solving them with the Davis-Putnam algorithm for multi-valued formulas (MV-SAT solver, see [11]).
The MV-SAT solver proceeds with an exhaustive search of all possible values trying to satisfy the formula,
but avoiding to check useless variables by pruning subtrees in exaustive search: in the worst case, time of
execution is exponential, but this exaustive search is performed in an efficient way and in practice, many
heuristic optimizations are implemented in SAT-solvers.

We propose a different implementation of the algorithm in [11], using Gröbner basis. We want to
represent the condition of a set of states sq, · · · , sr to be in sequence with the system of equations

F(Xq[1], · · · ,Xq[n]) = (Xq+1[1], · · · ,Xq+1[n])
...

F(Xr−1[1], · · · ,Xr−1[n]) = (Xr[1], · · · ,Xr[n]).
(3)

The system in (3) can be represented with an ideal (that we call Iq···r) of the polynomial ring

Fp[Xq[1], · · · ,Xq[n],Xq+1[1], · · · ,Xq+1[n], · · · ,Xr[1], · · · ,Xr[n]]

which has dimension n(r − q) over Fp. The ideal is generated by the polynomials

fi(X j[1], · · · ,X j[n]) − X j+1[i], for j = q, · · · , r − 1 and i = 1, · · · ,n.

To complete the analogy between the system in (3) and the Boolean formula used in [12], we add to
(3) a polynomial assuming a value different by zero on each element of the already found attractors, and
vanishing on each other state (we obtain it by interpolation on a finite field): this way, at each step of the
algorithm we have a system of polynomial equations FP, in nk variables (n copies for each element of the
path of length k) whose solution (if there exists) is a sequence of k states which doesn’t end in one of the
attractors already found.

To find at each step a set of states satisfying FP, we propose to reduce it preliminarly through the
computation of its reduced Gröbner basis: this simplificates the system, thanks to the elimination theorem
(Theorem 2).

Theorem 2 (elimination theorem) Let I ⊂ k[X1, · · · ,Xn] be an ideal with Gröbner basis G, respect to lexicographic
order with X1 > X2 > · · · , > Xn. Then, for every 0 ≤ k ≤ n, the set Gk = G∩ k[Xk+1, · · · ,Xn] is a Gröbner basis of Ik.

The way Theorem 2 can be applied is: starting from a set of equations f1, · · · , fs ∈ k[X1, · · · ,Xn], the
reduced Gröbner basis calculated according lex order eliminates, as far as it is possible, variables from the
last equations. From algebraic geometry (see Proposition 4) we know that solving the system composed by
the reduced Gröbner basis is equivalent to solve FP: knowing this, we can try every possible value for the
last equation, which depends on as less variables as possible, and substitute their solution in the previous
ones, coming back to change the current values if we find a conflict. This method, analogously to SAT, is
exponential in the worst case but it is usually quicker since it proceeds eliminating useless solutions.

Proposition 4 V(I) is an affine variety: in particular, if I = 〈 f1, · · · , fs〉, thenV(I) = V( f1, · · · , fs).

As a resume of this last part of the thesis, we say:

• in a polynomial dynamical system representing a Gene Regulatory Network, the most important
information about macroscopic behavior of the GNR derives from attractors and their lengths;

• through optimal algorithms it is commonly possible to compute attractors in a time less than expo-
nential;

• following the thesis from k-calculus to extraction of attractors from a PDS, we find macroscopic
behaviors which are consequence of all microscopic details of the description of proteins and molecules.
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Original contributions of the thesis

In this thesis we present the following original contributions:

• a formal decomposition of any k-reaction into elemental reactions which still fit into the syntax of
k-calculus: we prove this decomposition to be complete (Proposition 1) and correct (Proposition 2),
moreover it considers all the combinatorial possibilities to assemble the original k-complex, hence it
can be used in a simulation modelling completely the original set of reactions;

• an adaptation of Gillespie’s stochastic algorithm to work on k-reactions, by modelling in the original
reaction constants only physical parameters leading to molecular collision, and separately, into balanced
weights, the likelihood each reaction has to be activated if in competition with other reactions;

• a direct algebraic way to implement the algorithm in [12], computating attractors in a polynomial
dynamical system: instead of using Boolean formulas, we model a path of length k, which doesn’t fall
in any of the attractors already found, in a system of polynomial equations, and use Gröbner basis
and the elimination theorem to reduce and solve the system.
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